30 Inch Wide Eclipse Modular Cubers

Technical Training
• Ice Making Head
 – CME1386
 – CME1686

• Compressor Package
 – CP1316
 – CP2086

• Condenser
 – ERC1086
 – ERC2086
• The remote system is made up of three parts:
 – Ice Making Section or Head Unit - 115 volt
 – Compressor Package - 208-230 volt
 – AC Condenser - 208-230 volt

• Flexible Modular System
 – CME1386 or CME1686 can connect to CP1316
 – ERC1086 can be used on 1000, 1300 or 1600 systems
 – All are R-404A systems
• 30” Wide Head Units
• CME1386 or CME1686 or CME2086
 – Remote Low Side
 – CM³ technology
 • Water and Control Systems
 • Rotomolded freezing compartment
Ice Making Section

- Refrigerant Line Connections
 - Vapor
 - Liquid
 - Suction
- Ice making compartment
- Five or Six evaporators
 - CME1386 has 5
 - CME1686 and CME2086 have 6
Vapor Inlet Valve

- Purpose: Opens during harvest to allow vapor to enter the evaporators
- 24 volt coil
• Single externally equalized valve
 – Meters refrigerant through a distributor
• 115 volt pump
• Same for all three
• Pedestal type
• Pump motor separated from reservoir
 – Keeps motor drier
 – Motor cap keeps condensation off motor
• **AutolQplus**
• Uses sensors for
 – ice harvest,
 – bin full indications
 – water reservoir temperature
 – water level
• Controls freeze and harvest cycles
CME Electrical Box

- Transformer 115 to 24, 85 VA
- Purge valve timer
- Control wire connection nearby
 - Wire routes to compressor package
 - Controls contactor and solenoid valves

Box purposely mounted at an angle
Two sensors
 - Water
 • In pump discharge hose
 • Used to check water temp for anti-slush and refrigeration system operation
 - Liquid
 • Used to determine which pre-set time for first harvest cycle
 – Lower temperatures = longer first harvest cycle
• Opens to add water and fill reservoir
 – Adds water during harvest
 – Fills at beginning of freeze
 – Refills once more during freeze
• Opens to drain the reservoir during harvest
• Controlled by purge valve timer
• Infrared sensors
 – Located at the ice outlet port
 – Create a light curtain
 – Harvesting ice triggers the sensor
- CME1386, CME1686 and CME2086 are all equipped with a bin thermostat.
- Thermostat routes through hole in base.
Bin Thermostat

- Thermostat bulb must be mounted to the bracket
- The bracket mounts to the bottom of the ice machine
• Two models
 – CP1316
 • Reciprocating compressor
 – CP2086
 • Scroll compressor
Low Side: Compressor Suction
High Side: Compressor Discharge
Receiver Liquid Outlet
• CPR valve restricts compressor dome pressure during harvest
 – 55 to 60 PSIG
 – Pre-set - don’t adjust it!
• Normally Closed, opens during harvest
• Bypasses condenser coil and directs discharge gas to vapor line
• Maintains discharge pressure during freeze
• Active at any temp below 70°F.
 – Rated at 217 PSIG, freeze cycle pressure may be between 220 and 250 during cold ambient operation
Liquid Inlet Valve

- Normally Open, closes during harvest
- Controls liquid flow into receiver
- Isolates refrigerant in condenser during harvest
- Improves cycle time
• Shipped with system charge
• Three ports
 – Liquid inlet
 – Liquid outlet
 – Vapor outlet
• Toggle switch controls condensing unit
• Control Wire connection from Ice Making Section to control the system
• Electrical power connected at contactor
• Remote condenser fan connects at contactor
• Scroll compressor
• Three Phase
 – Supply wiring can make it start backwards
 – To fix, switch two power leads
• Single Phase
 – Always starts with the correct rotation
 – Can reverse after power interruption
 – Time delay relay in circuit to prevent reversal
• Compressor protection circuit
 – 24 volt transformer
 – 24 volt relay
 – Time Delay Relay
• Power interruption of as little as 15 milliseconds causes relay to shut compressor off for 30 seconds
• Compressor then restarts
• Oil sight glass and oil drain / fill port
• Don’t add oil!
 – Oil level will change during each cycle
 – Ranges between 1/3 & 1/2 full
• Two models - ONLY for Eclipse
 – ERC1086 - used with CP1386 and CP1686
 – ERC2086 - only used with CP2086
• No headmaster in condenser
 – Headmaster is in CP unit
• Swivel nut connections for CP unit
 – Don’t connect these condensers to a regular remote!
• Three systems, single and three phase for each
 – 1300
 – 1600
 – 2000

• Must match components to create system
• 1300 -
 – CME1386, CP1316, ERC1086
• 1600 -
 – CME1686, CP1316, ERC1086
• 2000 -
 – CME2086, CP2086, ERC2086
• CP units may also be connected to approved central condenser coil using tubing kit RTE10
 – Coil must NOT have headmaster
• CME can be above or below condensing unit
 – If above, limit is 15 feet
• Pre-charged lines are used
 – 3 tubes per set
 – 20, 50 and 75 foot only
 – No extra refrigerant charge required
 – S trap required when condensing unit is over 20’ above ice making head
Other Configurations

Approved Central Condenser Coil

CP Unit

RTE10 Line Set

3RTE Line Set

Ice Making Head
• Modular system - connect CP to ERC
• Assemble on roof or ground
• ERC has back legs and two braces
 – Assemble legs and braces to condenser
• Connect wires to junction box
• Place ERC on back of CP - lip on CP holds ERC up
• Fasten CP to ERC
• Connect liquid and discharge line connections
• Route wire to CP control box and connect to contactor
Partial Assembly, One Thread Showing

Status: Not Ready, diaphragms partially pierced
Partial Assembly, Threads are Flush

Status: Not Ready, diaphragms pierced but connection not leak proof.
Completed Assembly

Status: Ready, diaphragms fully pierced and joint is leak proof
• Three tubes
• Reversible
• CME routing determines which end goes to CME
 – Out the back - use double-bend ends at CME
 – Out the top - use single 90 degree ends at CME

Ends for out the CME top
Ends for out the CME back
• Route lines in two groups
 – Liquid and Vapor
 – Suction separately for ease of routing
 • 3/4” tube requires careful handling
 – Check for holding charge before installation
 – Route control wire with line set
 – Only shorten if necessary
 • Do before connections are made!
 • Purge with nitrogen while brazing
 – Schraders at both ends for purging
 • Evacuate to 300 microns or less
 • Add holding charge if connecting later
Install CME

- Flush against wall capability
- Drains left or back
- Route refrigeration tubes out the top for flush installations
- 115 volt unit, cord provided
• Attach water inlet
• Attach drain - 3/4”
• Connect refrigerant tubing. Add foam tape/cork tape to suction line nut
• Secure unit at sides or back with provided strap-clip
• Connect precharged lines
 – Use refrigerant oil
 – Use two wrenches to prevent quick-connect diaphragm damage from rotating tube
• Connect control wire
• Connect power, check voltage
Initial Start Up

• Check installation
 – Power
 – Water
 – Drain
 – Tube Routing

• No soak out needed
 – Plug in CME unit
 – Check EEPROM code
 – Push Freeze to start
• CME unit
 – Opens & closes Purge Valve
 – Fills with water
 – Switches on Pump
 – Switches on Condensing Unit
 • Compressor and fan begin to operate

• Adjustments
 – Purge is adjustable
• **CM³** control system
 – Water level sensor for
 • Reservoir water fill
 • Freeze cycle termination
 – Ice sensors to sense
 • Ice harvest
 – Controller determines cycles and operates components
 • Uses water level to determine freeze cycle length
 • Uses length of time for ice to fall to determine next harvest
 • Uses thermostat to determine bin full
• Water level sensor
 – Two photo-electric eyes in housing
 – Top eye blocked tells controller water level is low
 – Bottom eye blocked tells controller water reservoir is full
Control Details

- Ice sensors - photo-eyes
 - Located at bottom of ice drop zone
 - One side is an emitter, the other a detector
 - Creates a light curtain that can sense groups of cubes falling during harvest
• Similar to conventional remote ice cubers
 – Condensing unit forces liquid refrigerant to the ice making section
 • TXV meters refrigerant all evaporators
 – At a pre-determined water temperature, the pump stops for 30 seconds
 – As ice forms on the evaporators, the water level drops
 – About half way through the cycle the water reservoir re-fills
 – The next time the water level drops to the point where the top of the slot in the float stick blocks the eyes, the system goes into the harvest cycle
• Eclipse features Cold Temperature Harvest
 – Condensing Unit may be located outside
 • Temperature Range between -20 and 120 F.
 • Receiver is with the condensing unit
 • Vapor line connects discharge gas and receiver vapor to vapor inlet line in ice making section
 • High vapor flow rates achieved with no compressor impact due to use of CPR valve
 • Vapor contains latent heat - even at sub-zero temperatures
 • Condensing vapor in the evaporators transfers the heat
 • Evaporators warm up and ice is released
• Vapor inlet valve opens
• Condenser bypass valve opens
• Receiver inlet valve closes
• Purge valve opens
• Pump stops for a time then restarts to purge the reservoir of water
• Purge valve closes after 40 seconds
• Inlet water valve opens for a few seconds to add water to the reservoir for harvest assist
• Harvest continues until the controller stops it
• Controller begins timing harvest
• Ice falling interrupts the signal from the ice sensor emitter to the receiver
 – The time of that interrupt is recorded by the controller
 – The last time the controller receives an interrupt signal is saved as the cube release time
 – Extra time is calculated from the actual cube release time

\[
\text{Measured Cube Release Time} + \text{Calculated Extra Time} = \text{Harvest Time}
\]
• Freeze Cycle Time (90/70):
 – 1300 - 16 to 17 minutes
 – 1600 - 17 to 18 minutes
 – 2000 - 12 to 13 minutes

• Harvest Cycle Time (90/70)
 – 1300 - 2 minutes
 – 1600 - 1 1/2 to 2 minutes
 – 2000 - 2 1/2 minutes
• **Freeze Cycle**
 – Rapid Pull Down to between 50 and 40 PSIG
 – Gradual Pull Down to
 • 1300 30 to 34 PSIG
 • 1600 35 to 37 PSIG
 • 2000 23 to 25 PSIG just before Harvest
 – Pressures at CP unit or CME will be the same during Freeze

2000 lb model, end of freeze
• Harvest Cycle
 – At the ice making section, low side pressure rapidly increases to 90 - 95 PSIG or higher in hot ambient conditions
 – At the CP unit compressor access valve, dome pressure is limited by the CPR valve to 55 - 60 PSIG during harvest
• CP Unit
 – Discharge during low ambient freeze will be about 240 PSIG
 – Discharge during harvest will be about 100 PSIG
 – High Pressure Cut Out opens at 450, closes at 350 PSIG
• De-lime with Scotsman Ice Machine Cleaner
 – Push & release clean button
 – Pour in 24 ounces of ice machine cleaner
 – Clean for 10 minutes, then push and release clean button again, wait 20 minutes and shut unit off

• Check distributors for scale build up
• What happens if?
• Vapor Inlet Valve Does Not Open
 – Vapor line hot
 – Discharge pressure increases
 – Low side pressure does not change
 – No ice release - large slabs of ice
 – 2 blink refrigeration light
• What happens if?
• Control wire becomes unplugged
 – CP unit does not operate
 – Exceeds maximum freeze time
 • Controller shows continuous refrigeration diagnostic light
• What happens if?
• Condenser by pass valve does not open
 – High pressure cut out opens
 • Note: High discharge pressure during harvest will not be present at liquid connection
 – Ice may release, but slowly
- What happens if?
- Receiver inlet valve does not close during harvest
 - Very little change
- If it sticks closed
 - Hi discharge pressure cut out opens
 - Controller shows continuous diagnostic light
• What happens if?
• Headmaster is stuck in bypass
 – Very little liquid flow to TXVs
 – Long freeze cycle
 – Controller shows continuous refrigeration diagnostic light
• What happens if?
• There is a refrigerant leak
 – No change until refrigerant level drops below the operational threshold for the ambient
 • Headmaster will try to maintain minimum discharge pressure - but will be hissing as gas flows through
 • Ice formation will be poor
 • Low capacity/long freeze cycle will result
 – Add charge to confirm, if ice making resumes with normal discharge pressure there is a leak
• What happens if?
• There is no water to the ice making section
 – Water is part of the recipe for ice!
 – Controller will stop unit operation but retry filling every 20 minutes until water is restored
• What happens if?
• The purge valve leaks through
 – May result in small cubes
 – Short freeze cycle
 – May have long harvest cycle
• What happens if?
• The inlet water valve leaks through
 – Keeps adding water (heat load) to reservoir
 – Result is a long freeze cycle
Service Diagnosis

- What happens if?
- The condenser fan stops
 - CP unit’s hi pressure cut out will open
 - Maximum freeze time will be exceeded
 - CME unit will shut system off
 - Controller will display continuous refrigeration diagnostic light
• What happens if?
• The CPR valve fails
 – Pressure during harvest will not be at the pre-set point
 • 55 to 60 PSIG
 – Will not hold an adjustment
 – No external symptom
• CPR setting should be checked if compressor is replaced
• What happened if?
• The controller is showing a one blink refrigeration diagnostic light
 – This indicates that the ice harvest was very slow and the controller timed-out on maximum harvest time
 – Ice was sensed by the control system
 – Likely causes include
 • Beginning to freeze up
• What happened if?
• The controller is showing a two blink refrigeration diagnostic light
 – This indicates that the ice harvest was very slow and the controller timed-out on maximum harvest time
 – Ice was NOT sensed by the control system
 – Likely causes include
 • Freeze up
 • Vapor inlet valve did not open
 • Ice sensor can’t “see” ice well
• What happened if?
• The controller is showing a continuous refrigeration diagnostic light
 – Maximum freeze time exceeded
 – Dirty condenser coil
 – Fan motor inoperative
• What happened if?
• The controller is showing a two blink water diagnostic light
 – Slow or no water fill
 • Possible clogged water filters
 – Low water level - leaks out
 – Water level sensor not working or harness connection poor
• What happened if?

• The controller is showing both diagnostic lights on continuously
 – This indicates that the temperature sensors are not working or not plugged in. They need to be plugged back in or replaced.
 – The ice machine will operate without the thermistors working, but it is limited in its diagnostics that way.
• Eclipse is a three part ice making system
 – Ice making head
 – Compressor Package
 – Condenser
• There are 6 systems
 – 600
 – 800
 – 1000
 – 1300
 – 1600
 – 2000